
Non-stochasticity of time-dependent quadratic Hamiltonians and the spectra of canonical

transformations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 521

(http://iopscience.iop.org/0305-4470/19/4/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 15:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 521-531. Printed in Great Britain 

Non-stochasticity of time-dependent quadratic Hamiltonians 
and the spectra of canonical transformations 

George A Hagedorrt, Michael Loss$ and Joseph SlawnyO 
t Department of Mathematics, Virginia Polytechnic Institute and State University, Blacks- 
burg, Virginia 24061, USA 
$ Department of Physics, Princeton University, Princeton, New Jersey 08544, USA 
B Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, 
Virginia 24061, USA 

Received 20 December 1984, in final form 19 July 1985 

Abstract. We study the quantum mechanical evolution generated by Hamiltonians which 
are quadratic polynomials in q and p with time-dependent coefficients. This evolution is 
determined by a unitary implementation of the phase flow of the corresponding classical 
Hamiltonian. In the case of quadratic Hamiltonians which are periodic in time, the Floquet 
operator is shown to have either a pure point spectrum or a purely transient absolutely 
continuous spectrum. Thus, the motion is non-stochastic. In a simple model of a quadratic 
Hamiltonian with random time dependence, the quantum mechanical motion is shown to 
be non-stochastic almost surely. 

1. Introduction 

In this paper we study the evolution generated by quantum mechanical Hamiltonians 
which are self-adjoint quadratic polynomials in q and p with time-dependent 
coefficients. We show that this evolution is determined, up to a phase factor, by an 
explicit unitary implementation of the corresponding classical phase flow. This allows 
us to analyse the large-time asymptotics of the quantum mechanical motion in some 
specific cases by studying the associated classical motion. The specific cases we study 
are time-periodic quadratic Hamiltonians and a class of quadratic Hamiltonians with 
random time dependence. The quantum evolutions for these systems are (almost surely 
in the random case) non-stochastic in the sense that their long-time behaviours are 
well behaved. 

To make this last statement precise, let us first consider the case of time-periodic 
quadratic Hamiltonians. Let H ( t )  be a quadratic polynomial in q and p for each t, 
and assume the coefficients of these polynomials have piecewise continuous time 
dependence which is periodic with period T. Under these circumstances, there exists 
a unitary propagator U ( s ,  t )  with the property that, if Y ( t )  is a solution to the 
Schrodinger equation i C ” / d t  = H( r)Y, then Y(s) = U ( s ,  t)Y( t ) .  We define the 
Floquet operator of the system to be U (  T, 0). The significance of this operator is due 
to the fact that its spectral properties reflect the qualitative behaviour of the motion 
generated by H( . ). The analogues of bound states for time-periodic Hamiltonians 
are the eigenvectors of the Floquet operator. At times T, 2 T, 3 T, . . . , such a state is 
equal to the state at time 0 multiplied by a phase factor. At time nT, the phase factor 
is simply the nth power of the corresponding eigenvalue of U (  T, 0). One should note 
that if H (  t )  is independent of time, then eigenfunctions of H(r )  = H ( 0 )  are also 
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522 G A Hagedorn, M Loss and J Slawny 

eigenfunctions of U (  t, 0) = exp(-itH(0)) for any t. Similarly, the analogue of the 
absolutely continuous spectrum for a time-independent Hamiltonian is the absolutely 
continuous spectrum of the Floquet operator for a time-periodic system. If one further 
refines the absolutely continuous spectrum, as has been done by Avron and Simon 
(1981), then the transient absolutely continuous spectrum (Avron and Simon 1981) of 
the Floquet operator corresponds to the 'non-stochastic' part of the absolutely con- 
tinuous spectrum. In most physical examples, states in the absolutely continuous 
subspace correspond to the particle moving off to infinity in phase space as time goes 
to *W. The transient absolutely continuous spectrum was defined in Avron and Simon 
(1981) to characterise states which move to infinity in an ordinary, non-chaotic way. 
(For a good discussion of the connection between spectral theory and dynamical 
behaviour, see Avron and Simon (1981), Perry (1984, ch l).) 

Our results concerning time-periodic quadratic Hamiltonians are summarised by 
the following theorem. 

Theorem 1. Let H( t )  be quadratic in q and p and periodic in t with period T Assume 
that the time dependence of the coefficients is piecewise continuous. Then the Floquet 
operator U (  T, 0) has either a strictly pure poilit spectrum, or has a strictly transient 
absolutely continuous spectrum. 

We next wish to consider some systems which have a simple random time depen- 
dence. For simplicity, we will consider a specific example, although one could very 
easily deal with more general cases. 

Let H( t )  = p 2 / 2  + A ( t ) x 2 ,  in one dimension, where A ( t )  is chosen to be a constant, 
wk, for k S t < k + 1. The wk will be chosen according to a probability distribution p. 
We assume that this distribution is non-trivial in the following sense. For each w in 
the support of p, consider the classical Hamiltonian H, =p2/2+0x2.  In the next 
section, we will show that there exists a unique Mu E SL(2, R), such that the dynamics 
governed by H,,, have 

Let G be the subgroup of SL(2,R) that is generated by all such Mu, for w in the 
support of p. Our non-triviality assumption is that G must contain at least two elements 
of SL(2, R) with no common eigenvector. 

In contrast to the periodic case studied above, there is no obvious operator for this 
model whose spectral properties determine the long-time behaviour of the quantum 
motion. That is, there is no obvious analogue of the Floquet operator. Therefore, we 
must use some other notion of what it means to be 'non-stochastic'. What we will 
prove is the following theorem. 

Theorem 2. Let H( t )  be chosen as described above, with the non-triviality condition 
satisfied. Let VI( t )  be the solution to the Schrodinger equation determined by H f  t ) .  
I f q ( 0 )  E Y(Schwartzspace),thenforalmost allchoicesofthesequencew,, l (VI(O),  q( t ) ) l  
decays faster than any inverse power of t as t + 03. 

This theorem shows that the motion asymptotically obeys the conditions that define 
the transient absolutely continuous subspaces for a time-independent Hamiltonian 
(Avron and Simon 1981). VI belongs to the transient absolutely continuous subspace 
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for H if, and only if, W is a limit of vectors cp which have the property that 
I(cp,exp(-itH)cp)) decays faster than any inverse power of t .  For this reason, we 
interpret the conclusion of theorem 2 to mean that the motion is almost surely 
non-stochastic as t + 03. 

For convenience, we will concentrate on the analysis of the one-dimensional case 
and simply comment about the generalisations to n dimensions. 

In the next section, we discuss the relationship between the classical and quantum 
motions associated with quadratic Hamiltonians. In § 3, we study the time-periodic 
case and prove theorem 1 in the one-dimensional case. We prove theorem 2 in § 4. 

2. The connection between classical and quantum motions 

In this section we will shdw that in the case of quadratic Hamiltonians, classical motion 
determines quantum motion modulo phase factors. One could compute the phases 
without much difficulty, but to do so would only complicate matters. As mentioned 
above, we will restrict attention to the one-dimensional case and comment about the 
generalisation to n dimensions. Some of this material must be ‘folk wisdom’, but we 
are not aware of specific references (see note added in proof). 

We will concentrate on Hamiltonians of the form 

H( t )  = a ( OP’+ P (t)[P. 4 + 4‘ PI + Y( t)q2 + t)P + 4 tb3 + l( t ) ,  

where the coefficients a(?), P ( t ) ,  y ( t ) ,  a(?), ~ ( t )  and I(?) are real and piecewise 
continuous. By a slight abuse of notation, we will let H ( t )  denote both a classical 
and a quantum Hamiltonian. We will assume that l( t )  = 0 since the term l( t )  in H( t )  
does not affect the classical motion, and simply gives rise to the trivial phase factor 
exp(-i JS l ( r )  d r )  in the quantum propagator U(s ,  t ) .  

There are several ways to see that the classical motion determines the quantum 
motion in the case of quadratic Hamiltonians. For example, one can use the functions 
of Hagedorn (1981, 1985) to reduce the propagation of quantum states to the solution 
of Hamilton’s equations. However, the most illuminating way is to compare the Lie 
algebras of classical Poisson brackets and quantum commutators. 

In classical mechanics (Amold 1978, Goldstein 1965), one defines the Poisson 
bracket of two functions F and G on phase space by 

n aGaF a G a F  
j = 1  api aqi aqi api 

{F, G}= C 

The real polynomials in p and q of degree less than or equal to two form a real Lie 
algebra under the operation {., a } ,  and Hamilton’s equations can be written (in one 
space dimension) as the system 

dqld t  = ( 4 ,  H ( t ) )  

dPldt  = {P, H(t)l. 

In quantum mechanics, the analogous operation is the commutator (up to a factor 
of 4). The self-adjoint operators corresponding to real polynomials of degree less 
than or equal to two form a Lie algebra under the operation 

(A, B) = -i[ A, B] = -iAB + iBA. 
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Also, given such an operator A, if we define A( t )  = U (  t, 0) A U ( 0 ,  t ) ,  then formally 
we have 

dA( t)/dt  = -$A( t ) ,  H (  t ) ] .  

In particular, if we choose A to be q and p ,  we obtain analogues of Hamilton’s 
equations. For A equal to q or p ,  one can make these formal computations rigorous 
by interpreting them in the following weak sense. Let cp and q be elements of the 
domain of the usual harmonic oscillator Hamiltonian. We then interpret the above 
equation to mean 

(d/dt)(cp, A(t)qIr) = - i (A( t )*~ ,  H(t)W+iW(t)*cp,  4 t ) W  

For A equal to q or p ,  it is not difficult to show that all the quantities make sense and 
that the equation is satisfied. 

The correspondence between the classical and quantum motions in the case that 
we are considering is the following: the two Lie algebras are isomorphic, and con- 
sequently, the motions of q( 1 )  and p (  t )  are the same. The latter fact is the remarkable 
one. For any piecewise continuous quadratic Hamiltonian H( t ) ,  the classical and 
quantum motions for q ( t )  and p ( t )  are given by 

where M ( t )  is a matrix. 
Due to the irreducibility of the Schrodinger representation of the Lie algebra of q 

and p in quantum mechanics, the quantum version of equation (1) determines the 
unitary propagator U ( s ,  t )  up to a time-dependent phase. Thus, up to phases, the 
classical flow determines the quantum evolution. 

For future reference, let us make several observations. First, note that the matrix 
M (  t )  in equation (1) must belong to SL(2, R). We may see this by explicit computation, 
or by using the fact that the classical phase flow preserves volume. Furthermore, 

explicit examples show that every matrix in SL(2, R) may occur. Second, let T 

be the translation of phase space given by the relation 

Then equation (1) may be written as the composition 

For any linear operator M E GL(2, W), we have the relation 

M T  [(;)I M-*  = T [ M (31. (3) 

Thus, the affine actions given by equations (1) and ( 2 )  are representations of the 
semi-direct product of SL(2, R) and R2. 

Remark In n dimensions, the analogues of equations (1) and ( 2 )  are valid, but M ( t )  
must belong to the group of 2n x 2n symplectic matrices, Sp( n, R). This follows from 
the fact that canonical transformations preserve the symplectic structure on phase space. 
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3. The time-periodic case 

In this section we will prove theorem 1 in the one-dimensional case. To do this, we 
will first classify the various affine transformations that occur in equation (2). Then 
we will identify the spectral types of the quantum analogues of the elements of each 
of the classes of affine transformations. Since every Floquet operator associated with 
quadratic Hamiltonians is one of these operators (up to a phase), theorem 1 will follow 
from this. 

We begin with some notation. For quantum mechanical operators A and B, we write 
A - B if A = e x d i d ) B  for some real d. We write A = B if A is unitarilv eauivalent * \  , ,  

to B. We denote the unitary implementation of the translation's T 

These operators are only determined up to phases, but here we choose to specify them 
by the formula 

We denote the unitary implementation of the action of M E SL(2, R) by R [ M ] .  Again, 
these operators are only determined up to phases, so we will assume they have been 
chosen in some arbitrary way. 

As mentioned at the end of 0 2 ,  the relevant group of affine transformations of R2 
is the semi-direct product of SL(2, W) and R2. Thus, We can unitarily implement the 

affine group on R2 by the products W [(,a)] R [ M ]  modulo phases. The fact that we 

are representing a semi-direct product follows from the relation 

R [ MI W [ ( i) ] R [ MI-' - W [ JM 'J-' (,U)] 

where J is the matrix ( y  -A). One should note that this is not the same semi-direct 

product described by equation (3). Equation (3) describes the action of the affine 
group on the position q and the momentum p .  Equation (4) describes the action on 
quantum mechanical state vectors. 

[(;)I RIM1* 
We wish to find the spectral type of all operators of the form W 

To do this, we will first classify all such operators up to unitary equivalence. As a first 
step in this classification, we note that if N = AMA-' with M,  A E SL(2, R), then 

Therefore 



526 G A Hagedorn, M Loss and J Slawny 

Thus, to list the qualitative spectral properties of the collection of operators of the 

form W [ ( i) ]  R [  M I ,  one only needs to consider these operators for one M in each 

conjugacy class and all a and p. 
To describe the conjugacy classes, we first note that there are three types of matrices 

in SL(2, W). They are called elliptic, hyperbolic and parabolic, and they are classified 
as follows. 

Elliptic-those matrices in SL(2, R) with two distinct complex eigenvalues (on the 
unit circle) and plus or minus the identity. 

Hyperbolic-those matrices in SL(2, R) with two distinct real eigenvalues. 
Parabolic-those non-diagonalisable matrices in SL(2, R) with 1 or - 1  as a double 

eigenvalue. 
Since elements of SL(2,R) have determinant 1, those matrices M E S L ( ~ , R )  with 
/trace MI < 2 are elliptic. Those with ltrace MI > 2 are hyperbolic. Those with trace 
*2 are elliptic if they are diagonalisable and parabolic if they are not. 

Every elliptic matrix M in SL(2, R) is conjugate to the rotation matrix 

cos cp sin cp 

-sincp cos cp 

for some cp E [ 0 , 2 ~ ] .  To see this, we first note that it is true for the cases of plus or 
minus the identity matrix. Next, we assume M is elliptic, but not plus or minus the 
identity. Let exp(icp) and exp(-icp) be the eigenvalues of M ,  and let U and ti be the 
corresponding eigenvectors. We may assume that U and cp have been chosen so that 
the matrix A, whose columns are ( U +  8)/2 and ( U  - 8)/2i, belongs to SL(2, R). Then 
A-%A = E ( ~ ) .  

Every hyperbolic matrix M in SL(2, R) is conjugate to one of the matrices 

for some non-zero cp E R. To see this, choose independent eigenvectors u1 and u2 for 
M so that the matrix A, whose columns are u1 and u2, belongs to SL(2, R). Let *exp(cp) 
be the eigenvalue of M corresponding to U,. Then *exp(-cp) is the eigenvalue 
corresponding to u2, and A-’MA = H,(cp). 

Every parabolic matrix M in SL(2, R) is conjugate to one of the matrices 

where cp E R\{O}. To prove this, let U, be an eigenvector of M with eigenvalue *l. 
Choose u2 so that (MJiZ)u2= cpu,, where cp has been chosen so that the matrix A, 
with columns u1 and u2, belongs to SL(2,R). Then A - ’ M A  = P*(cp). Furthermore, by 
conjugating P,(cp) with a diagonal element of SL(2, R), one obtains P+(cp’) for some 
cp’. The only restriction on cp‘ is that it must have the same sign as cp. 

Thus, the set of matrices { E ( c p ) ,  H+(cp), P,(cp)} contains representatives of all of 
the conjugacy classes of SL(2,R). With this information, we can now describe the 

spectra of all operators fo the form R [ M ]  = W [(:)I R [ M ] .  After studying this 
- - 

special case, we will return to the general case of operators of the form W 
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The mappings cp 3 E(cp), cp + H+(cp) and cp + P+(cp) are one parameter groups 
whose generators are 

F = (  0 1  ) .=( I  0) P = ( o  0 1  o). 
-1 0 0 -1 

We will now show that the corresponding generators in quantum mechanics are 
(p2+q2)/2,  ( q . p + p -  q)/2, and p2/2. To do this, we first claim that R[E(cp)]- V(cp), 
where 

To see this, notice that 

satisfies the differential equation 

in R’, with the initial condition 

In the quantum mechanics, 

satisfies the same initial condition and the same differential equation, that is 

=fiU(cp) ( -2ip) U (  Q)-’ 
2iq 

Thus, U(cp) implements E(cp), and the claim is proved. 
Similar arguments show that 

The spectra of the self-adjoint operators p 2  + q2,  pa q + q * p  and p 2  are well known 
to be purely discrete, transient absolutely continuous (see e.g. Perry 1984, proposition 
6.2) and transient absolutely continuous, respectively. Thus, R [  E (  cp)], R [  H+(cp)l and 
R [  P+( cp)] have strictly pure point, transient absolutely continuous and transient 
absolutely continuous, respectively. 
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The spectra of R[H-(cp)] and R[P-(cp)] are also purely transient absolutely con- 
tinuous. Using arguments similar to those above, we see that 

R [ N - ( ~ ~ ) I  - w ~ + ( c p ) i  
and 

R [ P- ( (0 >I - r R p+ ( - CP >I 
where r: L2(R)  + L2(R)  is the reflection which takes the wavefunction “(x) into P(-x) .  
The operator TR[H+( cp)] is diagonalised by the generalised eigenfunctions IxIih and 
lxliA sgn(x). The operator rR[ P+( -cp)]  is diagonalised by the eigenfunctions sin(A’”x) 
and c o ~ ( A ” ~ x ) .  Using the expansions in these eigenfunctions, one can easily see that 
the spectra of R[ H-( cp)] and R[P-( cp)] are purely transient absolutely continuous. 

This completes the classification of the spectra of the operators R[ MI for M E  
SL(2, I$). 

Remark. Consider the ‘parametric resonance problem’ (Arnold 1978) H (  t )  = 
p 2 +  [A ( t )  + C]q2, with A ( t )  periodic but not constant. The matrix M( T )  depends on 
C in an interesting way. As C is increased from -CO, M( T )  starts out hyperbolic. At 
some critical value of C, it becomes parabolic. As C is increased further, there is an 
interval in which M (  T )  is elliptic; this band is open. At the end of the band there is 
a point at which M( T )  is parabolic. Above this point, there is a gap in which M( T )  
is again hyperbolic. And so on. For generic periodic functions A ( t ) ,  there are infinitely 
many elliptic bands and hyperbolic gaps separated by parabolic points. The proof of 
this is the standard Floquet analysis for a periodic Schrodinger equation (Hill’s 
equation). 

In the quantum mechanical analogue of this problem, the unitary Floquet operator 
has spectral type which switches back and forth between strictly pure point and strictly 
transient absolutely continuous as C is varied. 

We now turn to the problem of classifying the spectra of all operators of the form 

W[(;)] R [ M ] , w i t h M ~ S L ( 2 , R ) a n d  (;) # (:). As before, we need only consider 

the situations in which M is one of the operators E(cp) ,  H,(cp) or P,(cp). 
The argument which we present below is not our original argument. We wish to 

thank Barry Simon for the proof which we present, since it is more enlightening and 
technically less complicated. 

We separately study three cases. 

Case 1. M = E(cp)  with cp an integral multiple of 27r. 
In this (trivial) case, M is the identity operator, and R[M] is simply multiplication 

by a phase factor. Therefore, W 

For some angle U ,  

where W [ (31 is a non-trivial translation. Therefore, W [(;)I R[M] has a purely 

transient absolutely continuous spectrum. 
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Case 2. M is H,( cp) for cp # 0, P-( cp) for cp # 0, or E( cp) with cp not an integral multiple 
of 2T. 

In this case, we will show that W [ (i)] R [ M ]  is unitarily equivalent to R [ M ]  

modulo phases. The equivalence arises from a translation of the origin in the classical 
phase space. 

We first note that the number one does not belong to the spectrum of M. Thus, 

given any (pa>, we can set 

(;) =(I-M)-(p”), 

The affine 

map takes 

map of R2 which corresponds to W [(;)I R [ M ]  is T [(;)I M. This 

the point (i) into the point M (i) + (p”). By a simple calculation, this 

into [(:)I M T [(;)I-’, which maps the point is the same as the mapping T 

the point M(‘-’)+(;).  P - 6  

(3 
The corresponding quantum mechanical operator, W [(;)I R [ M ] ,  is thus equal 

to W [ (i)] R [ M ]  W [(;)I-‘ modulo phases. Since this operator is unitarily 

equivalent to R [  MI, the spectral type of W [(,a)] R [ M ]  is the same as that of R [ M ] ,  

which we classified earlier. 

Case 3. M = P+(cp). 

The quantum transformation W [ ( p”) ] R [  P+( cp)] corresponds to the classical affine 

transformation T [(,a)] P+(cp), which takes the point 

.I(.,(;)+(;)=( q+cpP+a ). 
P + P  

This transformation can be rewritten as the mapping which takes the point 

the point Pi( 9) , where y = a/cp - p / 2 .  This is the transformation 

which is obviously conjugate to T 
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By a simple calculation, T [ ("p/z)] P+(cp) coincides with the classical phase flow 

at time t = cp for the Hamiltonian H =p2/2+pq/cp. Therefore, modulo phases and 

unitary equivalence, W [(;)I R[P+(cp)]  is the Stark effect propagator exp[-icp(p2/2+ 

pq/ cp)]. If p = 0, this is a free propagator, whose spectrum is purely transient absolutely 
continuous. If p # 0, it is the propagator for a Stark Hamiltonian with a non-zero 
field. Such Hamiltonians are unitarily equivalent to multiplication by q (Reed and 
Simon 1978, p 118) and hence have purely transient absolutely continuous spectra. 

This concludes the proof of theorem 1 in one dimension. In higher dimensions, 
one must do similar analyses with SL(2, R) replaced by the symplectic groups. 

Remark. If one studies the standard forced harmonic oscillator, H ( t )  = 
i { p 2 +  q 2 } +  q cos(wt), then one sees some of the situations described above. If w Z 1, 
the Floquet operator has a strictly discrete spectrum. If w = 1, the spectrum is purely 
transient absolutely continuous. 

4. The proof of theorem 2 

,In this section we consider the simple model with random time dependence that was 
introduced in the introduction. We will first study the classical motion, and then study 
the quantum evolution. 

We will be primarily interested in the classical phase flow at integer times. We 
define the matrix Mu, E SL(2, R) by the relation 

The assumption on the probability distribution p is that the subgroup G of SL(2, W) 
generated by the matrices Mu, contains at least :WO elements which have no common 
eigenvector. This assumption implies (Ishii and Matsuda 1970, Ishii 1973) that the 
hypotheses of Furstenberg's theorem on products of random matrices (Furstenberg 
1963) are fulfilled. From this theorem we can conclude that for almost all vectors 

(i), we have 

for almost all choices of the wk. 

Then 
We now turn to the quantum mechanical analogue. Let 9 be a Schwartz function. 

I(*, u(r,o)*)ls l /( l  +q2+p2)1'2.\IIJI ~~(1+q2+p2)-1 '2U(f ,  O).\IIlI 

6 c, I I (  1 + q2 + p 2 p 2  U (  r, O)*Il. 

To prove the theorem, it is clearly sufficient to prove that the norm in the last expression 
tends to zero exponentially as t tends to infinity. To show this, let M (  t )  be the classical 
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phase flow propagator that corresponds to U (  t, 0) and let a (  t )  be its norm. By using 
the polar decomposition, we see that M (  t )  = lM( t)l V (  t ) ,  where lM( t)l is real symmetric 
and V( t )  is orthogonal. By diagonalising lM( t ) l ,  we see that M (  t )  = A( t ) B (  f )C(  t ) ,  

where A ( t )  and B ( t )  are orthogonal and B ( t )  is the matrix [ :) (Y ( ;) - 1  I 
Now, W, O ) - R [ A ( t ) l  R [ B ( t ) l  R [ C ( t ) I ,  so 

11(1 + q 2 + p 2 ) - 1 ’ 2 U ( t ,  0)qI) = 11(1 + ( ~ ( t ) ~ q ~ +  ~ ( f ) - 2 p 2 ) - ” 2 R [ C ( t ) ] ’ € l l  

S 11(1+ ( ~ ( t ) ~ q ~ ) - ” ~ R [ C ( t ) ] ’ € ~ ~  

Since R [ C ( t ) ] - e x p [ - i / 3 ( t ) ( p 2 + q 2 ) ]  for some function p ( t ) ,  the set {R[C(t)]T:  0 s  
t <CO} is contained in a compact subset of Schwartz space. Thus, IIR[C( t ) ] q l l J o ~  C2, 
and so, 

1 + a (  f)2q2)”’2R[ C( t ) l*  II I / (  1 + a (  t)2q2)-”211z IIR[C( t ) I q I I m  

s C,a( t ) - l *  

Since (5) implies that a (  t )  grows exponentially, this estimate implies the theorem. 
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